

Pioneering Plastics

RECYCLED TIRES' IN THERMOPLASTICS: A VALUE-ENHANCED SOLUTION TO SUSTAINABILITY

Scrap Tire Recycling Conference Haikun Xu | Greenville, SC, December 4-5, 2019

REDEFINING RUBBER

Krauss Maffei Brands

Broad technology portfolio for a wealth of applications Machines, technologies, products and applications

TPE value by entech

Reaction Process Machinery

About Entech Group

Entech Inc. is a full service tire recycling facility. Production facilities located in northern Indiana. *Jomar Inc.* sister company, provides us with highly-engineered production equipment. *Paxco Inc.* Entech's owned trucking company provides prompt, reliable transportation service.

Paxco Inc.

Entech = A Commitment to Sustainability!

Products

- Crumb Rubber Infills
- Sports Surfaces
- Rubberized Asphalt
- Rubber Rock
- MRP

Last year we recycled:

105,000 Tons of Tires

What is Micronized Rubber Powder?

- Fine, dry, powdered elastomeric rubber particles
- Most often from end-of-life tire material
- Free of foreign particulates (metal, fiber, etc.)
- Typically range from 180 μm to 50 μm
- **3rd generation** of post-consumer tire processing products

1st generation: shredded tire rubber chips (typically 1 inch or larger)

©2019 Entech TPE – All rights reserved.

2nd generation: crumb rubber (usually 1/2-1/8 inch)

Why MRR? Find High Values.

Performance

Durability Flexibility Weather resistance Crack resistance Impact resistance Sound dampening Anti-skid Compatibility

Applications

Tire

Compounding

Injection-molding

Extrusion

Asphalt

MRPs inherit all the good properties of tire rubber.

[1] "Study on Powder Utilization of Waste Tires as a Filler in Rubber Compounding", Jin Kuk Kim, R. P. Burford. *Rubber Chemistry and Technology*. 1998
[2] "The Use of Recycled Tire Rubber to Modify Asphalt Binder and Mixtures," United States Department of Transportation, Federal Highway Administration, Sep. 2014.

Future MRP Uses: Find Higher Values

Plastic/MRP compounds Injection molded/extruded products Consumer/Construction/Transportation markets

Benefits:

Cost-effective solution Superior performance Stable supply sources Sustainability

Collaborated efforts should be utilized to add more values

How is MRP Used in High-value Molded/Extruded Products?

Van Dorn 400 Ton HT EL

Boy 35 Ton Proscan Alpha

調

How is MRP Used in High-value Molded/Extruded Products?

Hardness Study on MRP/TPO Compounds

Comparison of Properties on MRP/TPO Compounds

ente

Size and Size Distribution Analysis on MRP

The size and size distribution analysis of the **40-80** mesh-size rubber powder (MRP).

Size and Size Distribution Analysis on MRP

The size and size distribution analysis of the **80-99** mesh-size rubber powder (MRP).

		Hardness ASTM D2240	Melt Flow ASTM D1238	Tensile Properties (50 mm/min) ASTM D412/ASTM D638					Flexural Properties ASTM D790 Izod Impact ASTM D256					Formula	
	Material (Batch #)	Shore A	MFR g/10min (230C, 10 kg)	Tensile Strength (MPa)	Elongatio n @ break (%)	Yield Strain (%)	Yield Stress (Mpa)	Tensile Modulus (Mpa)	Modulus @ 100% ε (Mpa)	Flexural Modulus (MPa)	1% Secant Modulus (MPa)	Flexural Strength (MPa)	Impact Strength (J/m)	Break Type at 23C	MRP/TPO- D/PP
<u>3299</u>	02-17-10	87	3	6.7	199				6.0	75	72	2.7		NB	50/50/0
	02-17-11	90	8	7.4	183				7.0	119	116	4.0		NB	50/40/10
	02-17-12	92	17	7.6	100	83.7	7.6	9		185	176	5.6		NB	50/30/20
	02-17-13	93	32	8.0	47	39.6	8.0	20		272	256	7.7		NB	50/20/30
	02-17-14	94	59	8.6	26	20.3	8.6	42		407	372	10.6	186	Р	50/10/40
	02-17-15														50/0/50
1															
	11-16-41	86	2	6.7	189				5.9	78	76	2.8		NB	50/50/0
	01-17-10	90	5	8.0	194				7.2	114	109	4.0		NB	50/40/10
080	01-17-11	92	13	7.9	137				7.8	195	175	5.5		NB	50/30/20
40	01-17-12	93	30	8.0	67			94		261	240	7.4		NB	50/20/30
	02-17-25														50/0/50
I	09-15-11	86	3	7.3	212				6.2					NB	50/50/0
	02-17-05	89	2	7.7	255				6.6	123	119	4.3		NB	50/40/10
66	02-17-06	92	3	7.7	213				7.1	196	178	5.7		NB	50/30/20
<u>8089</u>	02-17-07	93	5	8.1	77	60.4	8.1	13		253	239	7.2		NB	50/20/30
	02-17-08	94	10	8.7	36	29.9	8.7	29		394	351	9.9		NB	50/10/40
	02-17-09	95	15	8.9	19	15.6	8.9	57		502	440	12.0	106	Р	50/0/50

en

©2019 Entech TPE – All rights reserved.

en

Projects that Make Sense Appropriate Applications

Wheel Chocks

Wheel Chock: MRP-modified TPOs

Purpose: Injection molding grade TPO compounds.

Injection Molding: high pressure, low MFI, high clamp tonnage, long cycle times.

Key Properties: Good strength, excellent crack resistance and impact resistance, especially at low temps.

Application scenario: thick bulky parts, requires some surface improvement, can load high percentage of MRP.

Great example for parts of highly recycled content.

Wheel Chock: Comparison

Substantial Surface Improvement!

Dust Pans

SHIM

Dust Pan: MRP-modified Polypropylenes

Purpose: Injection molding grade PP compounds

Formulation: 32 mesh MRP/ Recycled PP

Compounding: co-rotating intermeshing twin screw extruder

Application Scenarios: typical thin parts, requires rigidity and toughness, can load medium percentage of MRP.

Advantages: Combined properties of MRP/PP. Recycle content 100%.

Sump Basins

Basin: Impact-modified Polypropylenes

Purpose: Injection molding grade PP compounds

Formulation: Postconsumer TPO/ Recycled PP

Compounding: co-rotating intermeshing twin screw extruder

Application Scenarios: large parts with deep draw ratio, requires rigidity and toughness, can load medium percentage of MRP.

Advantages: Impact-improved "non-break" PP. Recycle content 100%.

Hypothetical Compounding Cost Calculation #1							
Cost Item	Description	Cost	Cost Per Month	Price Per Pound			
Labor	Wages, FICA, Benefits, Etc.	30.00/ Hour	\$15,000	\$0.05			
Electricity	Electricity at 10 cents/kWh	\$9.60/ Hour	\$3,840	\$0.01			
Machinery Amortization	1 Million \$ Line, 5 yrs @ 4.5% Int.	\$18,643/ Month	\$18,640	\$0.07			
Machinery Maintenance	Full line maintenance	\$1,200 per week	\$5,160	\$0.02			
			Compounding Cost Per Pound	\$0.15			

Pounds Per Hour	700
Hours Per Month	400
Pounds Per Month	280,000

Basic 80 Durometer Compound for an Injection Molded Wheel Chock

	Cost Item	Price Per Pound	Percentage of final Compound	Price Per Pound in Final Compound	
Compounding Expense		\$0.15	100%	\$0.15	
Materials:	Recycled PP/TPO/PE	\$0.35	60%	\$0.21	
	MRP 40	\$0.22	40%	\$0.09	
Pa	ickaging Cost	\$0.03	100%	\$0.03	
			Subtotal	\$0.48	
			Overhead/Margin @ 30%	\$0.14	
			Price Per Pound	\$0.62	

Appropriate Applications are the Key

Ideal for...

Exterior

High Impact

Cold Temps

Crack Resistance

Resilience

Surface Grip

Key Benefits

1. Lower costs for TPE

2. Improve performance/Increase value

3. Add sustainability

Where is it not economically viable?

- Recycled, Granulated PE/PP/TPO (regrind) normally floats between \$.30 and \$.50.
- If regrind will perform acceptably in an injection molding application, it's not likely that an MRP filled resin will be competitive, because while MRP is relatively low cost, it costs money to mix it into the plastic regrind.

Recycled Tires in Thermoplastics is Evolving

MRP size reduction

Odor reduction

Engineering control

Sheet extrusion

Profile extrusion

Thermoforming

Rotational Molding

Innovation and exploration are necessary!

Injection molded parts requiring a soft "rubbery" feel

- •Parts that must resist cracking from impact or deformation
- •Where expensive TPE compounds are currently in use
- •Soft parts requiring a high recycled content

Surface Finish Improvement Adds More Possibilities

Surface Finish of TPO/MRP Parts is a Challenge!

TPO 10% MRP

20% MRP

30% MRP

40% MRP

50% MRP

ented

Roctool Heat & Cool System for Injection Molding

Roctool Heat & Cool Cycle for Injection Molding

Breakthroughs on Surface Finish of MRP-filled Parts

(a) Conventional mold (b) Induction-heated mold These are 50% MRP-filled samples!

(right) induction-heated molding ©2019 Entech TPE – All rights reserved.

(top) 8099 MRP-filled resin

(bottom) 4080 MRP-filled resin

(left) conventional injection molding

- **R&D efforts** are greatly needed for this field of study.
- Working together (collaboration and joint efforts) will facilitate the advancement of the industries.

 Sharing knowledge and technologies will accelerate and advance the industries further.

TPE Value Enhancement Examples

Free Project Evaluation Vertical Integration

- Compounding
- Injection Molding
- Extrusion
- Testing Capabilities

Phone: 574-822-9107 Email: info@entechtpe.com

10440 County Road 2 | Middlebury, IN 46540 | www.4entech.com

Krauss Maffei

WORK

2018

Thank you very much!

Haikun Xu Process Engineer Extrusion Division Email: haikun.xu@kraussmaffei.com

KraussMaffei Corporation | 7095 Industrial Road | Florence, KY 41042 | USA | www.kraussmaffeigroup.us