

## Changing materials regulatory landscape and impact on scrap tire markets

December 2019

### What we will review

- Federal materials regulations
- State materials regulations
- Insights on preparing for materials risk evaluations



# If you don't remember anything, remember these few points...

- 1. Identify chemicals of interest
- 2. Prepare early gather information, assess risk, fill data gaps
- 3. Engage in the risk evaluation process



# Trump administration impact – what you may think is happening



Federal chemical regulations

State chemical regulations





### Trump administration reality



Federal chemical regulations

State chemical regulations





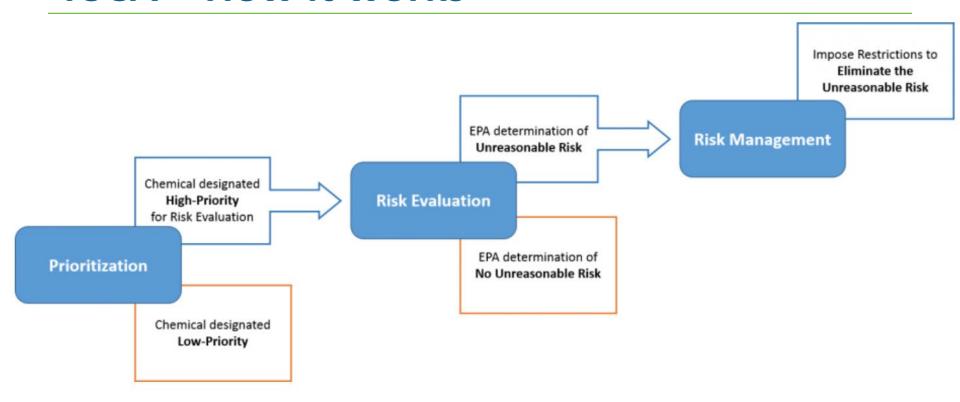
### FEDERAL CHEMICAL MANAGEMENT

# TOXIC SUBSTANCES CONTROL ACT (TSCA)



### **Toxic Substances Control Act (TSCA)**

Primary federal chemical management law in the U.S.


Bipartisan supported

Signed into law in 2016

EPA continues to work on implementation



### TSCA – How it works





## What is prioritization?

9-12 month public process

### **High priority**

"may present an unreasonable risk to human health or the environment because of a potential hazard and a potential route of exposure under the conditions of use"

Undergo risk evaluation

### **Low priority**

"substances that do not meet the high priority standard"



### How does EPA prioritize chemicals for review?

- 20 High priority chemicals undergoing evaluation at all times
- 50% of all High priority designations must come from 2014 Update of the TSCA Work Plan

U.S. Environmental Protection Agency

October 2014

#### TSCA Work Plan for Chemicals Assessments: 2014 Update

This document updates the June 2012 TSCA Work Plan for Chemical Assessment. The TSCA Work Plan Chemicals Methods Document explains the hazard, exposure, and persistence/bioaccumulation criteria, the data sources used, and how chemicals were scored. The 2014 Update describes why changes were made.

|   | Chemical Name          | When was the chemical added? | Hazard Criteria<br>Met                                                                              | Hazard<br>Score | Exposure Criteria<br>Met                                                                                                                                                          | Exposure<br>Score | Persistence &<br>Bioaccumulation<br>Criteria Met                             | Persistence &<br>Bioaccumulation<br>Score | Use                                  | Risk<br>Assessment<br>Status and<br>Other Actions | CASRN    |
|---|------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------------------|----------|
| 1 | Acetaidehyde           | Added 2012                   | Possible human carcinogen                                                                           | 3               | Used in consumer products Present in drinking water, indoor environments, ambient air, and groundwater High reported releases to the environment                                  | 3                 | Low environmental<br>persistence<br>Low bioaccumulation<br>potential         | 1                                         | Consumer<br>Industrial               | Not yet initiated                                 | 75-07-0  |
| 2 | Acrylonitrile          | Added 2012                   | Probable human<br>carcinogen                                                                        |                 | Widely used in<br>consumer products<br>Present in indoor<br>environments,<br>surface water,<br>ambient air, and<br>groundwater<br>High reported<br>releases to the<br>environment | 3                 | Low environmental<br>persistence<br>Low bioaccumulation<br>potential         | 1                                         | Consumer<br>Dispersive<br>Industrial | Not yet initiated                                 | 107-13-1 |
| 3 | tert-Amyl methyl ether | Added 2012                   | Chronic toxicity Central nervous system effects Potential carcinogenicity to specific target organs | 2               | Widely used in<br>consumer products<br>Present in drinking<br>water, surface<br>water, and ambient<br>air<br>Estimated to have<br>moderate releases<br>to the environment         | 3                 | Moderate<br>environmental<br>persistence<br>Low bioaccumulation<br>potential | 2                                         | Consumer<br>Industrial               | Not yet initiated                                 | 994-05-8 |



## **High priority chemicals**

Frist 10

**Asbestos** 

1-Bromopropane

Carbon Tetrachloride

1,4 Dioxane

Cyclic Aliphatic Bromide Cluster (HBCD)

Methylene Chloride

N-Methylpyrrolidone

Perchloroethylene

Pigment Violet 29

Trichloroethylene

# 20 proposed high

ority

p-Dichlorobenzene

1,2-Dichloroethane

trans-1,2- Dichloroethylene

o-Dichlorobenzene

1,1,2-Trichloroethane

1,2-Dichloropropane

1,1-Dichloroethane

Dibutyl phthalate (DBP) (1,2-Benzene- dicarboxylic acid, 1,2- dibutyl ester) Butyl benzyl phthalate (BBP) - 1,2-Benzene- dicarboxylic acid, 1- butyl 2(phenylmethyl) ester

Di-ethylhexyl phthalate (DEHP) - (1,2-Benzene- dicarboxylic acid, 1,2- bis(2ethylhexyl) ester)

Di-isobutyl phthalate (DIBP) - (1,2-Benzene- dicarboxylic acid, 1,2- bis-

(2methylpropyl) ester)

Dicyclohexyl phthalate

4,4'-(1-Methylethylidene)bis[2, 6-dibromophenol] (TBBPA)

Tris(2-chloroethyl) phosphate (TCEP) Phosphoric acid, triphenyl ester (TPP)

Ethylene dibromide

### 1,3-Butadiene

1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta [g]-2-benzopyran (HHCB)

### Formaldehyde

Phthalic anhydride



### How does EPA conduct a risk evaluation?

High priority chemical designation 3 - 3.5 yearScoping - "All reasonably known and foreseeable conditions of use" process Hazard and exposure assessment Risk characterization Risk determination



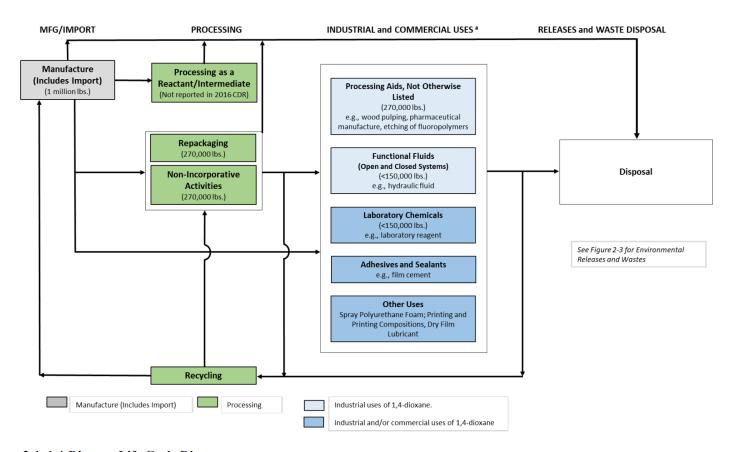
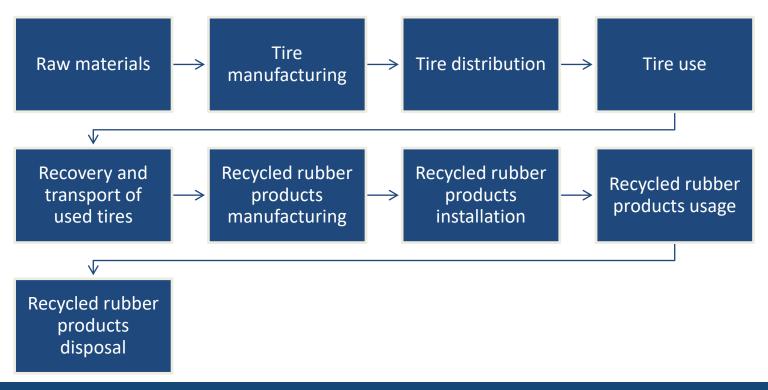



Figure 2-1. 1,4-Dioxane Life Cycle Diagram


The life cycle diagram depicts the conditions of use that are within the scope of the risk evaluation during various life cycle stages including manufacturing, processing, use (industrial or commercial) and disposal. The production volumes shown are for reporting year 2015 from the 2016 CDR reporting period (U.S. EPA, 2016a).

Draft Risk
Evaluation
for 1,4Dioxane:

https://www .epa.gov/site s/production /files/2019-06/documen ts/1 14dioxane draf t risk evalu ation 06-27-2019.pdf

<sup>&</sup>lt;sup>a</sup> See Table 2-4 for additional uses not mentioned specifically in this diagram.

### Conditions of use – tire industry





### **EPA's authority to manage risk**

- EPA has up to 18 months after a risk determination to issue a risk management rule
- Managing risk:
  - Ban or restrict manufacture, processing, or distribution in commerce;
  - Ban or restrict for a particular use or above a set concentration;
  - Require warnings and instructions with respect to use, distribution in commerce, or disposal;
  - Require recordkeeping or testing;
  - Prohibit or regulate any manner or method of commercial use;
  - Prohibit or regulate any manner or method of disposal; and/or
  - Direct manufacturers or processors to give notice of the unreasonable risk to distributors and replace or repurchase products if required.



### **Preemption**



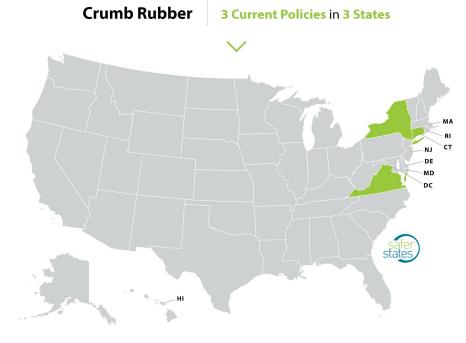


### STATE MATERIAL REGULATIONS



### State trends in material regulations

Green chemistry programs – safer alternatives (CA, WA)


**Ingredient disclosure** 

**Chemical bans/ restrictions** 



### Tracking chemical policies

http://www.saferstates.org/billtracker/FilterBills



Toxic/Issue: Crumb Rubber



### PREPARING FOR RISK EVALUATIONS



### **Preparing for risk evaluations**

Identify chemicals of interest

Collect existing data, identify gaps, generate new data

Engage value chain

Educate regulators

Stay engaged throughout regulatory process



## THANK YOU

Sarah Amick samick@ustires.org

